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Azobenzene-Appended Oligonucleotides Form Unexpectedly Stable Triple-Helixes
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Modified oligo(T)s carrying an azobebzene at the 5-ends
form unexpectedly stable triple-helixes with oligo(A)/oligo(T)
double-helix. The triplex-stabilizing activity of the azobenzene
is comparable with (or greater than) that of thymine.

Recently, much attention has been focusing onto triple-
helixes of DNA, because of their potential applications to
biotechnology, therapy, and others.! However, they are rather
unstable and only inefficiently formed under physiological con-
ditions. Thus, stabilization of triple-helixes is one of the most
urgent themes.? Furthermore, various functional residues
should be attached to triple-helixes in order to extend their
applications.

This paper reports a novel system, which fulfills both of
these requirements. It is shown that oligo(T)s bearing an
azobenzene at their 5’-ends form stable triple-helixes with
oligo(A)/oligo(T) duplex.® Significantly, the activity of the
azobenzene for the stabilization of triple-helix is comparable
with (or even greater than) the activity of thymine, which forms
Hoogsteen-type hydrogen-bonds with the Watson-Crick type
A/T base-pair. The absence of hydrogen-bonding is satisfacto-
rily compensated by other factors. Azobenzene has a number
of important features as a modulator of the functions of triple-
helixes: (1) easy chemical modification for the attachment of
versatile functional moieties, (2) simple and well-defined struc-
ture, and (3) photo-induced structural change (cis-trans isomer-
ization).

The modified oligonucleotides carry an azobenzene at the
5'-end of homothymidine, via different types of linkers (Figure
1). They were synthesized on an automated synthesizer by
using the corresponding phosphoramidite monomer.* The
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Figure 2. Melting curves of the triple-helixes of the modified
oligonucleotides (the solid lines): (a) X®T,,/a/t, (b) YT,,/a/t. The curves
for the T,,/a/t are also shown (the broken lines).

A,/ T, sequence for the triple-helix formation was placed in
the middle of the duplex of two 32-mer DNA (aand t). The
T,, values of the triple-helixes were measured by monitoring
the absorbance at 280 nm on a JASCO model V-530 spec-
trophotometer, equipped with a programmed temperature-con-
troller. The rate of temperature change was 1 °C/min. The
concentrations of a, t, and the modified oligonucleotide were
2.0, 2.2, and 2.4 umol dm-3 in pH 7.0 Hepes buffer (10 mmol
dm3), respectively. Under these conditions, the a/t duplex
(T, =73.0°C) is completely formed.

The solid lines in Figure 2 depict the typical melting
curves for the triple-helix formation between the a/t duplex
and the modified oligonucleotide. For the purpose of compar-
ison, the curves for the triple-helixes of the native oligonu-
cleotide T, (with the a/t duplex) are also presented (the bro-
ken lines). Itis noteworthy that the T, value of the X(T , /a/t
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X 5- XOTTTTITTTTTTTIT-3’
1, : 5- XOTITTTITITITITT-3
Y, : 5- YITTTTITITTTIT-3

t 1 5°-GCCACGAAATTTTTTTTTTTTTTAAACCGACG-3
a : 3-CGGTGCTTTAAAAAAAAAAAAAATTTGGCTGC-5’

Figure 1. The modified oligonucleotides bearing an azobenzene at the 5'-end.

triple-helix formation is also presented.

The DNA duplex a/t involving the A, /T, sequence for
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Table 1. The T, values (in °C) of the triple-helixes between
the a/t duplex and the modified (or native) oligo(T)s.*

Modified oligo(T) Native oligo(T)  [MgCl,}/mol dm®
X®T,, 253 T, 206 0.4
X®T,, 246 Ty, 26.8
YT, 291
X1, 23.1 T,s 18.0 0.1
XT,, 258 T, 225
YT, 260

*On duplicated runs, the T, values were identical with the values
presented here, within +1.0 °C.

triple-helix (25.3 °C) is higher than the value (20.6 °C) for the
T,,/alt triple-helix. Moreover, its T, is close to the value for
the T, /a/t triple-helix (see Table 1). The X®T,/a/t triple-
helix is almost as stable as the X@T  /a/t. Still more stable
triple-helix is obtained when an azobenzene is attached to the
5-end of T,, viaan amide linker (YT, ,, see Figure 2(b)). The
T, of the YT /a/t triple-helix (29.1 °C) is by 8.5 °C higher
than the corresponding value for the native triple-helix T ,,/aft,
and exceeds even that (26.8 °C) of the T,,/a/t. The terminal
azobenzene stabilizes the triple-helix in asimilar (in some case
greater) magnitude as does the thymine (at the 5’ -end),
although it does not form hydrogen-bonds with the Watson-
Crick A/T base-pair. Apparently, the hydrogen-bonding is
replaced by other interactions. The same conclusion was
obtained for the triple-helix formation of X@T,,, X®T,,, and
YT,; (see Table1).

The enormous stabilization of the triple-helixes by the
azobenzene is associated with its intercalation into the base
pairs in the a/t duplex.2 The azobenzene residues in the pres-
ent oligonucleotides mostly take their trans-forms (with
respect to the stereochemistry of the N=N bond),> which are
planar ® and sufficiently apolar. Furthermore, they are placed
near the duplex on the triplex formation. Thus, the intercala-
tion preferentially occurs, although azobenzene is not a typical
intercalating agent. Consistently, negative circular-dichroism
(CD) was weakly induced around 360 nm on the triple-helix
formation: the values of Ae (mol-t dm® cm!) were —3.5 and
—5.4 for X@T  /a/t and X®T ,/alt at -5 °C. This indicates
that the long axis of the azobenzene is almost parallel to the A-
T base-pairsin the a/t duplex.” The intercalation stabilizes the
triple-helixes, in place of the Hoogsteen-type hydrogen-bonds
in the native T,/a/t triple-helix. The argument is supported
by the fact that the triple-helix was substantially destabilized
when the trans-azobenzene was isomerized to the cis-form by
irradiating UV-light.2 After the UV irradiation, the T, values
of the X@T /a/t and the XOT  /a/t triple-helixes were 6.1
and 10.9 °C, respectively. The cis-azobenzene is non-planar ©
and more polar than is the trans-isomer. Thus, it cannot be
accommodated between two A/T base-pairs, and does not sta-
bilize the triple-helix.

In conclusion, an azobenzene, tethered to the 5'-end of
oligo(T), notably promotes the triple-helix formation with
oligo(A)/oligo(T) duplex. By attaching appropriate functional
residues to the azobenzene, the systems can be made still more
sophisticated and used for versatile applications. Photo-regu-
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lation of their functionsis also promising.
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